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ABSTRACT 
We propose a random graph model which is a special 

case of sparse random graphs with given degree sequences. 
This model involves only a small number of parameters, 
called logsize and log-log growth rate. These parameters 
capture some universal characteristics of massive graphs. 
Furthermore, from these parameters, various properties of 
the graph can be derived. For example, for certain ranges 
of the parameters, we will compute the expected distribu- 
tion of the sizes of the connected components which almost 
surely occur with high probability. We will illustrate the 
consistency of our model with the behavior of some massive 
graphs derived from data in telecommunications. We will 
also discuss the threshold function, the giant component, 
and the evolution of random graphs in this model. 

1. INTRODUCTION 
Is the World Wide Web completely connected? If not, 

how big is the largest component, the second largest com- 
ponent, etc.? Anyone who has "surfed" the Web for any 
length of time will undoubtedly come away feeling that if 
there are disconnected components at all, then they must 
be small and few in number. Is the Web too large, dynamic 
and structureless to answer these questions? 

Probably yes, if the answers for the sizes of the largest 
components are required to be exact. Recently, however, 
some structure of the Web has come to light which may 
enable us to describe graph properties of the Web qualita- 
tively. Kumar et al. [11; 12] and Kleinberg et al. [10] have 
measured the degree sequences of the Web and shown that 
it is well approximated by a power law distribution. That  is, 
the number of nodes, y, of a given degree x is proportional 
to x -~ for some constant/~ > 0. This was reported indepen- 
dently by Albert, Barab£si and Jeong in [3; 5; 6]. The power 
law distribution of the degree sequence appears to be a very 
robust property of the Web despite its dynamic nature. In 
fact, the power law distribution of the degree sequence may 
be a ubiquitous characteristic, applying to many massive 
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real world graphs. Indeed, Abello et al. [1] have shown that 
the degree sequence of so called call graphs is nicely approx- 
imated by a power law distribution. Call graphs are graphs 
of calls handled by some subset of telephony carriers for a 
specific time period. In addition, Faloutsos, et al. [9] have 
shown that the degree sequence of the Internet router graph 
also follows a power law. 

Just as many other real world processes have been ef- 
fectively modeled by appropriate random models, in this 
paper we propose a parsimonious random graph model for 
graphs with a power law degree sequence. We then derive 
connectivity results which hold with high probability in var- 
ious regimes of our parameters. And finally, we compare the 
results from the model with the exact connectivity structure 
for some call graphs computed by Abello et al. [1]. 

1.1 Power -Law R a n d o m  Graphs  
The study of random graphs dates back to the work of 

Erd6s and R~nyi whose seminal papers [7; 8] laid the foun- 
dation for the theory of random graphs. There are three 
standard models for what we will call in this paper uniform 
random graphs [4]. Each has two parameters. One param- 
eters controls the number of nodes in the graph and one 
controls the density, or number of edges. For example, the 
random graph model G(n, m) assigns uniform probability to 
all graphs with n nodes and m edges while in the random 
graph model ~(n,p)  each edge in an n node graph is chosen 
with probability p. 

Our power law random graph model also has two pa- 
rameters. The two parameters only roughly delineate the 
size and density but they are natural and convenient for 
describing a power law degree sequence. The power law 
random graph model P (a ,  fl) is described as follows. Let y 
be the number of nodes with degree x. P(a, fl) assigns uni- 
form probability to all graphs with y = e~/x ~ (where self 
loops are allowed). Note that a is the intercept and fl is the 
(negative) slope when the degree sequence is plotted on a 
log-log scale. 

We remark that there is also an alternative power law 
random graph model analogous to the uniform graph model 
~(n,p).  Instead of having a fixed degree sequence, the ran- 
dom graph has an expected degree sequence distribution. 
The two models are basically asymptotically equivalent, sub- 
ject to bounding error estimates of the variances (which will 
be further described in a subsequent paper). 

1.2 Our Results 
Just as for the uniform random graph model where 

graph properties are studied for certain regimes of the den- 
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sity parameter and shown to hold with high probability 
asymptotically in the size parameter, in this paper we study 
the connectivity properties of P(a ,  t3) as a function of the 
power/3 which hold almost surely for sufficiently large graphs. 
Briefly, we show that when ~ < 1, the graph is almost surely 
connected. For 1 < 13 < 2 there is a giant component, i.e., 
a component of size O(n). Moreover, all smaller compo- 
nents are of size O(1). For 2 < fl < fi0 = 3.4785 there is 
a giant component and all smaller components are of size 
O(log n). For fl = 2 the smaller components are of size 
O(log n~ loglog n). For fl > 130 the graph almost surely has 
no giant component. In addition we derive several results 
on the sizes of the second largest component. For example, 
we show that for fl > 4 the numbers of components of given 
sizes can be approximated by a power law as well. 

1.3 P r e v i o u s  W o r k  
Strictly speaking our model is a special case of ran- 

dom graphs with a given degree sequence for which there 
is a large literature. For example, Wormald [17] studied 
the connectivity of graphs whose degrees are in an interval 
[r, R], where r > 3. Luczak [13] considered the asymptotic 
behavior of the largest component of a random graph with 
given degree sequence as a function of the number of ver- 
tices of degree 2. His result was further improved by Molloy 
and Reed [14; 15]. They consider a random graph on n ver- 
tices with the following degree distribution. The fraction 
of vertices of degree 0, 1, 2 , . . .  is asymptotically A0, A1, . . . ,  
respectively, where the A's sum to 1. It is shown in [14] 
that if Q = ~~i i(i - 2)Ai > 0 (and the maximum degree is 
not too large), then such random graphs have a giant com- 
ponent with probability tending to 1 as n goes to infinity, 
while if Q < 0 (and the maximum degree is not too large), 
then all components are small with probability tending to 1 
as n --* c~. They also examined the threshold behavior of 
such graphs. In this paper, we will apply these techniques 
to deal with the special case that applies to our model. 

Several other papers have taken a different approach to 
modeling power law graphs than the one taken here [2; 5; 6; 
10; 12]. The essential idea of these papers is to define a ran- 
dom process for growing a graph by adding nodes and edges. 
The intent is to show that the defined processes asymptot- 
ically yield graphs with a power law degree sequence with 
very high probability. While this approach is interesting 
and important it has several difficulties. First, the models 
are difficult to analyze rigorously since the transition prob- 
abilities are themselves dependent on the current state. For 
example, [5; 6] implicitly assume that the probability that 
a node has a given degree is a continuous function. The au- 
thors of [10; 12] will offer an improved analysis in an upcom- 
ing paper [16]. In [2] we derive a power law degree sequence 
for several graph evolution models for asymptotically large 
graphs by explicitly solving the recurrence relations given 
by the random evolution process for the expected degree se- 
quence and showing tight concentration around the mean 
using Azuma's inequality for martingales. We also derive 
results for the distribution of connected component sizes, 
but not for the entire range of powers given in this paper. 
Second, while the models may generate graphs with power 
law degree sequences, it remains to be seen if they generate 
graphs which duplicate other structural properties of the 
Web, the Internet, and call graphs. For example, the model 
in [5; 6] cannot generate graphs with a power law other than 

c/x  3. Moreover, all the graphs can be decomposed into m 
disjoint trees, where m is a parameter of the model. The 
(a, fl) model in [12] is able to generate graphs for which the 
power law for the indegree is different than the power law 
for the outdegree as is the case for the Web. However, to 
do so, the model requires that there be a constant fraction 
of nodes that have only indegree and no outdegree and visa 
versa. While this may be appropriate for call graphs (e.g., 
customer service numbers) it remains to be seen whether it 
models the Web. Thus, while the random graph generation 
approach holds the promise of accurately predicting a wide 
variety a structural properties of many real world massive 
graphs much work remains to be done. 

In this paper we take a different approach. We do not 
attempt to answer how a graph comes to have a power law 
degree sequence. Rather, we take that as a given. In our 
model, all graphs with a given power law degree sequence 
are equi-probable. The goal is to derive structural proper- 
ties which hold with probability asymptotically approaching 
1. Such an approach, while potentially less accurate than 
the detailed modeling approach above, has the advantage of 
being robust: the structural properties derived in this model 
will be true for the vast majority of graphs with the given 
degree sequence. Thus, we believe that this model will be an 
important complement to random graph generation models. 

The power law random graph model will be described 
in detail in the next section. In Sections 3 and 4, our results 
on connectivity will be derived. In section 5, we discuss 
the sizes of the second largest components. In section 6, we 
compare the results of our model to exact connectivity data 
for call graphs. 

2. A R A N D O M  G R A P H  M O D E L  
We consider a random graph with the following degree 

distribution depending on two given values ~ and ft. Sup- 
pose there are y vertices of degree x > 0 1 where x and y 
satisfy 

log y = a - fllog x. 

In other words, we have 

I{vldeg(v) = x} I= Y = ~-Z" 

Basically, ~ is the logarithm of the number of nodes of degree 
1 and f is the log-log rate of decrease of the number of nodes 
a given degree. 

We note that the number of edges should be an integer. 
To be precise, the above expression for y should be rounded 

e t ~  down to [--~J. If we use real numbers instead of rounding 
down to integers, it may cause some error terms in further 
computation. However, we will see that the error terms can 
be easily bounded. For simplicity and convenience, we will 
use real numbers with the understanding the actual num- 
bers are their integer parts. Another constraint is that the 
sum of the degrees should be even. This can be assured 
by adding a vertex of degree 1 if the sum is old if needed. 
Furthermore, for simplicity, we here assume that there is no 
isolated vertices. 

We can deduce the following facts for our graph: 

1There are several ways to deal with nodes with zero degree. 
For simplicity, here we simply exclude such isolated nodes 
from the graph. 
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(1) The max imum degree of the graph is e~ .  Note that  
0 _< log y = c~ --/3 log x. 

(2) The vertices number  n can be computed as follows: By 
summing y(x) for x from 1 to e~ ,  we have 

~ e ~ f ¢(fl)e ~' i f / 3 >  1 
n = E z - 5  ~ I ~e~ i f f l = l  

x = 1  e ~  ~_~ i f O < f l  < 1 

where ~(t) = ~ ~-r is the Riemann Zeta function. ~- '~n=  1 1 

(3) The number  of edges E can be computed as follows: 

{ ~¢(~- 1)e ~ i f / 3 >  2 
E = x~--~ ~ ¥~e~ if/3 = 2 

x = l  27 1 e fl 
2 2 - ~  i f 0 < / 3 < 2  

(4) The differences of the real numbers  in (1)-(3) and their 
integer parts  can be est imated as follows: For the number  
n of vertices, the error term is at most e~ .  For/3 _> 1, it is 
o(n), which is a lower order term. For 0 < / 3  < 1, the error 
term for n is relatively large. In this case, we have 

c¢ c¢ 

n >  e~ e~ = /3e-~ 
- 1 - / 3  1-/3 

Therefore, n has the same magni tude  as le_--~. The number  
E of edges can be treated in a similarly way. For/3 > 2, the 
error term of E is o(E), a lower order term. For 0 < /3  < 2, 
E has the same magni tude  as in formula of i tem (3). In this 
paper, we mainly deal wi~h the case/3 > 2. The only place 
that  we deal with the case 0 < / 3  < 2 is in the next  section 
where we refer to 2 - / 3  as a constant .  By using real numbers  
instead of rounding down to their integer parts,  we simplify 
the arguments  without affecting the conclusions. 

In order to consider the random graph model, we will 
need to consider large n. We say that  some property almost 
surely (a. s.) happens if the probabil i ty that  the property 
holds tends to 1 as the number  n of the vertices goes to 
infinity. Thus  we consider a to be large bu t  where /3 is 
fixed. 

We use the following random graph model for a given 
degree sequence: 
T h e  m o d e l :  
1. Form a set L containing deg(v) distinct copies of each 
vertex v. 
2. Choose a random matching of the elements of L. 
3. For two vertices u and v, the number  of edges joining u 
and v is equal to the number  of edges in the matching of L 
joining copies of u to copies of v. 

We remark that  the graphs that  we are considering are 
in fact multi-graphs,  possibly with loops. This model is a 
natura l  extension of the model for k-regular graphs, which 
is formed by combining k random matching.  For references 
and undefined terminology, the reader is referred to [4; 18]. 

We note that  this random graph model is slightly dif- 
ferent from the uniform selection model P(a , /3 )  as described 
in section 1.1. However, by using techniques in Lemma 1 of 
[15], it can be shown that  if a random graph with a given 
degree sequence a. s. has property P under  one of these two 
models, then it a. s. has property P under  the other model, 
provided some general condit ions are satisfied. 

3 .  T H E  C O N N E C T E D  C O M P O N E N T S  
Molloy and Reed [14] showed tha t  for a random graph 

with (Ai + o(1))n vertices of degree i, where Ai are non- 
negative values which sum to 1, the giant component  emerges 
a. s. when Q = ~i>_1 i( i -2)Ai  > 0, provided that  the maxi- 

m um  degree is less than  nl/4-C They  also show that  almost 
surely there is no giant component  when Q = ~ > 1  i ( i -  
2)Ai < 0 and max imum degree less than  n 1/8-~. 

Here we compute  Q for our (~,/3)-graphs. 

et~ a 

Q = ~-~z(x- 2)Lxe-~ j 
;r=l 

e a  2 E e a  
E xZ-2 x ~ - i  
x = l  x = l  

..~ ( i f ( /3-  2) - 2 ¢ ( / 3 -  1))e ~ if/3 > 3 

Hence, we consider the value /3o = 3.47875 .... , which is a 
solution to 

¢(/3 - 2) - 2¢(/3 - 1) = 0 

If/3 >/30, we have 

e f t  ol 

Y~(~-2)L~J < o 
X=I 

We first summarize  the results here: 

1. When  /3 > fl0 = 3 .47875 . . . ,  the random graph a. s. 
has no giant component .  W h e n / 3  </30 = 3 .47875 . . . ,  
there is a. s. a unique giant component .  

2. When  2 < /3 < /30 = 3 .47875 . . . ,  the second largest 
components  are a. s. of size ®(log n). For any 2 < x < 
®(log n), there is almost surely a component  of size x. 

3. When /3 = 2, a. s. the second largest components  are 
of size ®(. lo._322~__]. For any 2 < x < O( 1°-29-a2-~ there 
• ~ l o g l o g  n + - -  ~, l o g l o g  n ] '  
is almost surely a component  of size x. 

4. When  1 < /3 < 2, the second largest components  are 
a. s. of size ®(1). The graph is a. s. not  connected. 

5. When 0 < /3  < 1, the graph is a. s. connected. 

6. For fl = /30 = 3 .47875 . . . ,  this is a very complicated 
case. It  corresponds to the double j u m p  of random 
graph (J(n,p) with p = L. For/3 = 1, there is a non- r~ 
trivial probabil i ty for either cases that  the graph is 
connected or disconnected. 

Before proceeding to s tate  the main  theorems, here are some 
general discussions: 

For fl > 8, Molloy and Reed's result immediately im- 
plies that  almost surely there is no giant component .  When 
/3 _< 8, addit ional analysis is needed to deal with the degree 
constraints.  We will prove in Theorem 2 that  almost surely 
there is no giant component  when /3 > rio. Also, almost 
surely there is a unique giant component  when fl </3o (The 
proof will be given in the full paper)• 

For 2 < /3  < rio, we will consider the sizes of the second 
largest component  in section 5. It  can be shown that  the 
second largest component  almost surely has size O(log n).  
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In the other direction, we will show that  the second largest 
component  has size at least @(log n).  

For 0 < /3  < 2, the graph has O(e~- )  edges. We expect 
that  the giant exponent  is very large. For some constants  T 
and C, a. s. every vertex of degree greater tha t  T log  n ~ C a  
belongs to the giant component .  Tha t  is, the number  of 
edges which do not  belong to the giant component  is quite 
small. It  is at most 

e a 
2 ~ L~-zJ ~ O((Ca) 2-~e'~) ~ O(E~ log2-~E) 

x--~a 

Now we consider the second largest component .  For any pair 
(u, v), the probabili ty tha t  u belongs to the giant component  
while v belongs to the other component  of size greater than  
M = O(1) is at most 

(E  +-1  log2-#E) M _-- o(n -2) 

for some large constant  M,  which only depends on/3.  This  
implies that  all components  except for the giant component  
a. s. have size at most M. Therefore, a. s. the second largest 
component  has size O(1). 

For 1 < /3  < 2, fix a vertex v of degree 1. The  probabil- 
ity that  the other vertex tha t  connects to v is also of degree 
1 is about  

e a 

Ct~ 

Therefore the probabil i ty tha t  no component  has size of 2 is 
at most 

- -  E) e a  ~ e ,  a 2 a -  (1 ( - - ~ , ,  ~ e -°(~ ~ ) ~ o0)  
e / 3  

In other words, the graph a. s. has at least one component  
of size 2. 

For 0 < /3 < 1, the random graph is a. s. connected. 
Here we sketch the ideas. Since the size of the possible 
second largest component  is bounded  by a constant  M,  all 
vertices of degree >__ M are almost surely in the giant com- 
ponent .  We only need to show the probabil i ty tha t  there is 
an edge connecting two small degree vertices is small. There  
are only 

M e c~ 

vertices w i th  degree less than M.  For any random pair of 
vertices .(u,v),  the probabi l i ty that there is an edges con- 
necting them is about  

1 - = O ( e -  ~ ) 
E 

Hence the probabili ty tha t  there is edge connecting two 
small degree vertices is at most  

1 = (Ce~)2®(eZ~) = o(1) 
u~'v 

Hence, every vertex is a. s. connected to a vertex with degree 
>_ M, which a. s. belongs to the giant exponent .  Hence, the 
random graph is a. s. connected. 

The case of B = 2 is quite interesting. In this case, the 
graph has 1 a yae  edges. Since a. s. all other components  ex- 
cept for the giant one has size at most  O(log n) = M a  log a 

for some cons tant  M.  Hence, a. s. all vertices with degree at 
least M a  log a are in the giant component .  Hence, the giant 
component  is so large tha t  only a small port ion of vertices 
(as bounded below) are not  in it. 

Mcc log c~ eC ~ 

x L ~ J  ~ ( l oga )e  ° 
= z = l  

For any pair of vertices (u, v), the probabili ty that  u is in 
the giant component  while v is in other component  of size 
at least 2.1tog a is at most  

l o g a  21 ~o~o (__ .~ . ._)  " ~ : e 2 . 1 ~  - 2 ' l a  ~_ o ( n  - 2 )  

Again, this almost surely is not  likely to happen.  Hence, we 
prove that  the size of the second largest components  is at 
most 2.11o~a. g 

Now we find a vertex v of degree x = 0.9loan. The g 
• probabi l i ty that all its neighbors are of degree 1 is a z 

The probabi l i ty that no such vertex exists is at most 

1 ~ e _ ( ~ ) x ~  r ,o.1,, (1 --  ( - - ) z ) * ~ -  ~ = e - - - 7 ~  = o ( 1 )  
a 

Hence, a. s. there is a vertex of degree 0 9 ~ ,  which forms ' lOg 
a connected component  of size 0.91o-~ + 1. Again, when x 
is smaller, almost surely there is a component  of size x. 

4. T H E  S I Z E S  O F  C O N N E C T E D  C O M P O -  
N E N T S  I N  C E R T A I N  R A N G E S  F O R / 3  
For /3 > /3o = 3 .47875 . . . ,  almost surely there is no 

giant component .  This  range is of special interest  since it 
is quite useful later  for describing the dis tr ibut ion of small 
components .  We will prove the following: 

THEOREM 1. For (a,/3)-graphs with/3 > 4, the distribu- 
tion of the number of connected components is as follows: 

1. For each vertex v of degree d = ft(1), let -r be the size 
of connected component containing v. Then 

cl W I  <- 

where cl = 2 - and c2 = ¢(~-1) - 

are two constants. In other words, for d a (slowly) 
increasing function and )~ = d e, for some arbitrarily 
small postive constant e, the vertex v a. s. belongs to a 

d connected component of size ~ + O(d½+e). 

2. The number of connected components of size x is a. s. 
at least 

e ~ 

(1 + o(Xllcf_ x  

and at most 

e~ log~ -1 n 
C3 X ~..{. 1 

where c3 = ~ is a constant only depending on 

/3. 
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3. A connected component  of the (c~,/3)-graph a. s. has 
the size at most  

e ~  = o(n~+~ logn) 

In our proof we use the second moment  whose convergence 
depends on /3 > 4. In fact for /3 < 4 the second moment  
diverges as the size of the graph goes to infinity so tha t  our 
method  no longer applies. 

Theorem 1 s t rengthens  the following result (which can 
be derived from Lemma  3 in [14]) for the range of fl > 4. 

THEOREM 2. For fl >/30 = 3 .47875 . . . ,  a connected com- 
ponent  of the (~, ~3)-graph a. s. has the size at most  

Ce ~ a = O ( n ~  log n) 

16 is a constant  only depending on/3.  where C = 

The proof  for Theorem 2 is by using branching process 
method.  We here briefly describe the proof since it is needed 
for the proof  of Theorem 1. We s tar t  by "exposing" any 
vertex v0 in our graph, then we expose its neighbors, and 
then the neighbors of its neighbors, repeat ing until the entire 
component  is exposed. At  any stage of the process the entire 
component  will have some nodes which are marked "live," 
some which are marked "dead," and some which are not 
marked at all. At stage i, we choose an arbi t rary live vertex 
v to expose. Then  we mark  v dead and, for each neighbor u 
of v, we mark  u live if u is unmarked so far. Let L~ be the set 
of marked vertices at s tage i and Xi  be the random variable 
that  denotes the number  of vertices in Li. We note tha t  all 
vertices in Li are markea  by either "live" or "dead".  Let 
Oi be the set of live vertices and ~ be the random variable 
that  is the number  of vertices of Oi. At each step we mark  
exact one dead vertex, so the to ta l  number  of dead vertices 
at i- th step is i. We have Xi = ~ + i. Initially we assign 
L0 = O0 = {v0}. Then  at stage i _> 1, we do the following: 

1. If Y~-I = 0, then we stop and output  X i - 1 .  

2. Otherwise,  randomly choose a live vertex u from 0 i - 1  
and expose its neighbors in Nu. Then  mark  u dead and 
mark  each vertex live if it is in N~ but  not in Li-1 .  
We have Li = Li-1  tO U~, and Oi = (Oi-a \ {u}) tO 
(u, \ L~_,). 
Suppose that  v has degree d. Then  X1 = d + 1, and 

]I1 -- d. Eventual ly ~ will hit 0 if i is large enough. Let r 
denote the stopping t ime of Y, namely, Y~ -- 0. Then  X~ = 
Y~ + r -- r measures the size of the connected component .  
We first compute  the expected value of ~ and then use 
Azuma ' s  Inequality [14] to prove Theorem 2. 
Suppose tha t  the vertex u is exposed at stage i. Then  
N~ ~ Li-~ contains at least one vertex, which was exposed to 
reach u. However, N ~ L i _ ~  may contain more than one ver- 
tex. We call them "backedges".  We note tha t  "backedges" 
causes the exploration to s top more quickly, especially when 
the component  is large. However in our case /3 > /3o -- 
3 .47875 . . . ,  the contr ibution of "backedges" is quite small. 
We denote Zi = # { N ~ }  and Wi = --/¢{N,, O L i - a }  -- 1. Zl 
measures the degree of the vertex exposed at stage i, while 
Wi measures the number  of "backedges".  By definition, we 
h a v e  

Yi - Yi-1 = Zi - 2 -  Wi.  

We have 

E(Z,) v '~e#  x = ~  e ~ e #  = ?--.==a x E = -ff ~-,~=1 x2-t~ 

= ¢(~-2)+o(n ~-~)  

¢(~-1)+o(n ~ s) 
¢ p-2 ;g-1 = ) 

Now we will bound Wi.  Suppose tha t  there are m edges 
exposed at s tage i - 1. T h e n  the probabil i ty that  a new 
neighbor is in Li -a  is at most  ~ .  We have 

oo  

m__ 

_ _  E 

(1-  .~)2 (*) 

"~ ((E)~ = - - + O  ) 
E 

= o(1). provided ~- 
2 ~ t  . ¢, ac ,  

When i < Ce ~ (~, m is at most  zea _< Ce ~ ~. Hence, 

m O ( n ~  -1 log n) ---- o(1) 
E 

We have 

i 

E(Id )  = Y ~ + ~ E ( ~ - ] ~ _ I )  
j = 2  

i 

= d + ~ E ( Z , - 2 - W j )  
j=2  

-- ~ a~ 1 = d + ( i - 1 )  (¢( /3  2) - 2 , )  - i O ( n t ' -  l ogn)  
\¢-~ 1) 

= d - c ~ ( i - 1 ) + i o ( 1 )  

P r o o f  o f  T h e o r e m  2: Since ]Yj - Yj-a] _< e ~, by Azuma ' s  
mart ingale  inequality, we have 

Pr( l~  - E(I~)I > t) < 2exp 

By taking i = 1D-18e~ log n , and t = ~ i .  Since 

E(Y~)+t  = d - c l ( i - 1 ) + i o ( 1 ) +  2 i  = c~ - - ~ i + d + c l + i o ( 1 )  < 0 

We have 

P r ( r  > ~ e ~  t l o g n )  = P r ( r > i )  <_ Pr(Y~>_O) 

< Pr(Y~ > E(Yd + t) 
_< 2 exp ~ = 

Hence, the probabifity tha t  there  exists a vertex v such that  

lies in a component  of size greater  than  ~ e ~  log n is at V 
& 

most  

2 2 
nn2 . . . .  n o(1). [] 

vertices 
The  proof  of Theo rem 1 uses the methodology above 

as a s tar t ing point while introducing the calculation of the 
variance of the above random variables. 
P r o o f  o f  T h e o r e m  1 
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We follow the nota t ion and previous results of Sec- 
tion 4. Under  the assumption /3 > 4, we consider the fol- 
lowing: 

Var(Zi) 
e~ e ~ 

~ - E(Z,) ~ 

E x~-~ - E(Zi)~ 

¢(~ - 3) + o ( ~  -1) (¢ (3-  2)): 
-,-1 \ ~(--~- V) ( (~  -- 1) + O ( n  t~ ) 

3 - -  1 
+O(n~ ) 
~ ( f l - - 3 )  ( ¢ ( f l  -- 2 ) ) 2  4 1 
¢(~- 1) k~-7-fi V ) .  + O ( n ~ -  ) 
c2 + o(1) 

since /3 > 4. 

We need to compute  the covariants. There  are models 
for random graphs in which the edges are in dependent ly  
chosen. Then,  Zi and Zj are independent .  However, in the 
model based on random matchings,  there is a small corre- 
lation. For example, Zi = x slightly effects the probabili ty 
of Zj  = y. Namely, Zj = x has slightly less chance, while 
Zj = y # x has slightly more chance. Both differences can 
be bounded by 

1 1 2 
E - 1  E - ~ E  --~ 

Hence CoVar(Z,, Zj) < E(Z,)E~-~ = O ( ~ )  if i # j .  

Now we will bound  Wi. Suppose that  there are m 
edges exposed at stage i - 1. Then  the probabil i ty tha t  a 

m We have new neighbor is in Li-1 is at most ~-. 

Var(Wi) 

9 ( ~  + 1) _ O ( ( E ) ~  ) 

m + O((E)~ ) 
E 

m CoV~(w,, w~) < ~/v~(m)v~(w,)  < ~ + o ( ( ) : )  

CoVar(Zi, Wj) ~_ ~/Var(Zi)Var(Wi) = O( ~f-~E~) 

° .~  ~)  
When i = O(e~) ,  m < ze~ = O(e , we have 

E( !d)  = d + ( i - 1 )  ( ¢ ( / 3 - 2 )  ) ~ 1 .m \~--~ 1) 2 +iO(nt~- ) - I - , - -~  

4 1 
= e - (i - 1)~1 + o ( . ~ -  ) 
= d - ( i - 1 ) c l  + o ( 1 )  

i 

Var(Yi) = Var(e + E ( Y j  - Yj-1)) 
j = 2  

i 

= V a ~ ( F , ( z j  - w,)) 
j = 2  

i 

= E ( v . ~ ( z , )  + Va~(Wj)) 
3=2  

+ ~ (CoVe,(z,, z~) 

-CoVar(  Zj, Wk ) + CoVar(Wj, Wk ) ) 

= + io(1) + + 

+O(e(~-l)~))  

= ic2 + io(1) + i(O(e (~-~)~) + O ( e ( ~ - l ) ~ ) )  

= ic2 +io(1) 

Chebyshev 's  inequali ty gives 

1 p~(l~i - E(~)l > a~) < a--7 

where a is the s t andard  deviat ion of 1~, a = ~ + o(v~) 
Let 
11 -- k~ - ~ V  ~ ~/-z-~,w,,~ and is = [ ~  + -/S'~ V2X ~ l ~  ," We have 

E( ]~ , )  - Aa = d - (il  - 1)cl + o(1) - (A c~/~/~ + o(x/~-l)) 

> 2j,, d/q~-- ~ , ~ - o ( ~ )  
- -  V ci 

= ~ -  o(vq) 

> 0 

Hence, 
1 

Pr(r < ia) <_ Pr(Yq < O) <_ Pr(Yq < E ( Y q ) -  Aa) <_ -~ 

Similarly, 

E(14~ ) + Aa 

Hence, 

= d - (i2 - 1)cl + 0(1) + ()~ c~/'~2/2 + o(V/'~-2)) 

> -2~,d/Zg +), c ~  + o(,/J) 
-- V ca 

_ _ a  d[2-~+ o ( ~ )  
- -  V ci 
< 0 

1 
Pr(r > i2) <_ Pr(Yi2 > O) <_ Pr(Y, 2 > E(Y~2) + An) <_ -~ 

Therefore 

Pr I~ £ 1 > - -  - -  < - c l  ClV c l ] - ~ -  
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For a fixed v and A a slowly increasing funct ion to infinity, 
above inequali ty implies tha t  almost surely we have r = 
~ + ~  O(AC-d). 

We note that  almost  all components  generated by ver- 
_g_d. One such compo- tices of degree x is about  the size of ~ 

1_ vertices of degree d. Hence, nent can have at most  about  c~ 
a¢ 

d is at least ~ Let the number  of component  of size q aa . 
d = clx. Then  the number  of components  of size x is at 
least 

c~ 
e~  

cf_axO(1 + o(1)) 

The  above proof actually gives the following result. The  
size of every component ,  whose vertices have degree at most  

16 is the same do, is almost surely Cdglog n where C = -~ 

constant  as in Theorem 2. Let x = Cd 2 log n and consider 
the number  of components  of size x. A component  of size x 
almost surely contains at least one vertex of degree greater  
than do. 
For each vertex v with degree d _> do, by part  1, we have 

Pr I " -  d l  > e ,  e-7-V GdJ - < --)~,~ 

C l O d ~ l ° g n ~ c c ~ 2 d  w e  have Let Aa = 4 

Pr(r  >Cd~logn) < Pr r > d + 
- - e--; e~ V - 2 ; d ]  

d 
~" C3 d41og~ n 

where Cz = ~ = ~½~ is constant  depending only on /3. c~C 2 
e o~ 

Since there are only ~-~ vertices of degree d, the number  of 
components  of size at least x is at most  

e ~  
e a d 
~c~  e0' log ~ 

d=d 0 

C3 e ~' £ 1 
-< do 4 log 2 n d ~-1 

d=d  0 

C3e ~ 2 1 < 
- do 4log 2 n / 3 - 2 d 0  ~-2 

2C3e ~' 

(fl - 2)d0 ~+2 log ~ n 

cr • ~---I e log ~ n 
C3 X ~ + I  

c3 = ~_C2) c 1 + ~  = 4~+a~ For x = ea--~a,  the where (~_~)~I+~ • 

above inequali ty implies tha t  the number  of components  of 
size at least x is at most  o(1). In other  words, a lmos t  surely 

no component  has size greater  than e ~+2 ~. This  completes 
the proof of Theorem 1. 

5. O N  T H E  S I Z E  O F  T H E  S E C O N D  L A R G  
- E S T  C O M P O N E N T  
For the range of 2 < / 3  </30, we want to show tha t  the 

second largest components  almost  surely have size of at most 
O(log n). However, we can not apply Azuma ' s  mart ingale  
inequality directly as in the proofs of previous sections. For 
example, the branching process me thod  is no longer feasible 

when vertices of large degrees are involved. We will modify 
the branching process me thod  as follows: 

For 2 < /3 < /30, we consider Q = ½E==I * ( ~ -  2 )1~] .  
(Note tha t  Q is a posit ive constant . )  There  is a constant  

1 =o )[=,J > 9.  We choose integer x0 satisfying ~ Y']~=I x ( x -  2 ~ '  
/i satisfying: 

/i _ O  
(1 -/ i)~ 4 

If the component  has more than  /iE edges, it must have 
®(n)  vertices. So it is a giant component  and we are done. 
We may assume tha t  the component  has no more t h a n / i E  
edges. 

We now consider the following modified branching pro- 
cess: We s tar t  with Y0* live vertices and Y0" > C l o g  n. At  
the i- th step, we choose one live ver tex u and exposed its 
neighbors. If the degree of u is less than  or equal to xo, we 
proceed as in section 4, by marking u dead and all vertices 
v E N(u) live (provided v is not  marked before). If  the de- 
gree of u is greater  than x0, we will mark  exactly one vertex 
v E N(u) live and others  dead, provided v is not  marked 
before. In both case u is marked dead. Let O~ be the set of 
live vertices at i - th  step ( in contras t  to the live set Oi).  We 
denote by Y/* the new random variable (in contrast  to Y~) 
tha t  is the number  of vertices in O*. Our main idea is to 
show tha t  Y~*, a t runca ted  version of ~ ,  is well-concentrated 
around E(Y/*). Al though it is difficult to directly derive such 
result for Yi because of vertices of large degrees, we will be 
able to bound the distr ibut ion Y/*. 

To be precise, Y/* satisfies the following: 

> [ C l o g n ] ,  where C = ~ is a constant  only y0* 
depending on/3.  

* - I  _< Yi* - Y ~ * I  G xo. 

• Let Wi be the number  of "backedges" as defined in 
section 4. By inequali ty (*) and the assumption that  
the number  of edges m in the component  is at most 
/in, we have E(Wi) _< 0_~) 2 = ~ .  Hence, we have 

1 x0 e~ 
E(Y~*-Y~*__~) ~ -~ y ~  x ( x -  2)[-dyJ - E ( W  0 

> Q Q _ Q  
- 2 4 4 

By Azuma ' s  mart ingale  inequality, we have 

e (r: <_ _< P (W- E(r,') _< 

< e- ~=~, =o(n -~) 

provided i > C l o g  n. 
The  above inequali ty implies tha t  with probabili ty at 

least 1 - o ( n - 1 ) ,  Y/* > 8 9 !  > 0 when i > r c l o g  ~1. Since Y~* 
decreases at most  by 1 at each step, Yi* can not be zero if 
i _< [C log  h i .  So Yi* > 0 for all i. In other  words, a. s. the 
branching process will not  stop. However, it is impossible 
to have Y* > 0, tha t  is a contradict ion.  Thus we conclude 
that  the component  must  have at least /in edges. So it is 
a giant component .  We note tha t  if a component  has more 
than [C log  n] edges exposed, then almost surely it is a giant 
component .  In part icular ,  any ver tex  with degree more than 
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[Clog n] is almost surely in the giant component. Hence, 
the second component have size of at most ®(log n). 

Next, we will show that the second largest has size at 
least @(log n). We consider the vertices v of degree x = ca, 
where c is some constant. There is a positive probability 
that all neighboring vertices of v have degree 1. In this case, 
we get a connected component of size x + 1 = (9(log n). The 
probability of this is about 

e ~ Since there are ~ vertices of degree x, the probability 

that none of them has the above property is about 

1 eC~ i e c~ 

(1 ¢(Z_ 1]o~)(oo)~ ~ 
( ¢--(-~-~ ) ~ 

= ~- (o~)~ =o(1) 

where we have 

i iffl>_3 
C =  1 if 3 > fl > 2 ~ l o g ~  

In other words, a. s. there is a component of size ca + 
1 = (9(log n). Therefore, the second largest component has 
size ®(log n). Moreover, the above argument holds if we 
replace ca by any small number. Hence, small components 
exhibit a continuous behavior. 

We remark that the methods described in this section 
can be extended to deal with the case of 0 G fl G 2. The 
detailed treatment will be left to the full paper. 

6. C O M P A R I S O N S  W I T H  R E A L I S T I C  MAS-  
SIVE G R A P H S  
Our (a,/3)-random graph model was originally derived 

from massive graphs generated by long distance telephone 
calls. These so-called call graphs are taken over different 
time intervals. For the sake of simplicity, we consider all 
the calls made in one day. Every completed phone call is 
an edge in the graph. Every phone number which either 
originates or receives a call is a node in the graph. When a 
node originates a call, the edge is directed out of the node 
and contributes to that node's outdegree. Likewise, when a 
node receives a call, the edge is directed into the node and 
contributes to that node's indegree. 

In Figure 2, we plot the number of vertices versus the 
indegree for the call graph of a particular day. Let y(i)  be 
the number of vertices with indegree i. For each i such 
that y(i)  > 0, a x is marked at the coordinate (i, y( i)) .  As 
similar plot is shown in Figure 1 for the outdegree. Plots 
of the number of vertices versus the indegree or outdegree 
for the call graphs of other days are very similar. For the 
same call graph in Figure 3 we plot the number of connected 
components for each possible size. 

The degree sequence of the call graph does not obey 
perfectly the (a, fl)-graph model. The number of vertices of 
a given degree does not even monotonically decrease with 
increasing degree. Moreover, the call graph is directed, i.e., 
for each edge there is a node that originates the call and 
a node that receives the call. The indegree and outdegree 
of a node need not be the same. Clearly the (a, fl)-random 
graph model does not capture all of the random behavior of 
the real world call graph. 

Nonetheless, our model does capture some of the be- 
havior of the call graph. To see this we first estimate a and 
fl of Figure 2. Recall that for an (a, fl)-graph, the number of 
vertices as a function of degree is given by log y = a - /3 log x. 
By approximating Figure 2 by a straight fine, fl can be es- 
timated using the slope of the line to be approximately 2.1. 
The value of e ~ for Figure 2 is approximately 30 × 106. The 
total number of nodes in the call graph can be estimated by 
¢(2.1)*e ~ = 1 . 5 6 . e  ~ ~ 4 7  × 106 

For fl between 2 and /30, the (a,fl)-graph will have 
a giant component of size ®(n). In addition, a. s. , all 
other components are of size O(log n). Moreover, for any 
2 > x > O(logn),  a component of size x exists. This is 
qualitatively true of the distribution of component sizes of 
the call graph in Figure 32 . The one giant component con- 
tains nearly all of the nodes. The maximum size of the next 
largest component is indeed exponentially smaller than the 
size of the giant component. Also, a component of nearly 
every size below this maximum exists. Interestingly, the dis- 
tribution of the number of components of size smaller than 
the giant component is nearly log-log linear. This suggests 
that after removing the giant component, one is left with an 
(a, fl)-graph with fl > 4 (Theorem 1 yields a log-log linear 
relation between number of components and component size 
for fl > 4. ) This intuitively seems true since the grekter the 
degree, the fewer nodes of that degree we expect to remain 
after deleting the giant component. This will increase the 
value of fl for the resulting graph. 

There are numerous questions that remain to be stud- 
ied. For example, what is the effect of time scaling? How 
does it correspond with the evolution of fl? What are the 
structural behaviors of the call graphs? What are the cor- 
relations between the directed and undirected graphs? It is 
of interest to understand the phase transition of the giant 
component in the realistic graph. In the other direction, the 
number of tiny components of size 1 is leading to many in- 
teresting questions as well. Clearly, there is much work to 
be done in our understanding of massive graphs. 
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F i g u r e  3: The number of connected components ]or each possible component size for the call graph of a typical day. 
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