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Abstract— Models for network topology are necessary for
simulation-based studies of a variety of networking prob-
lems. Increasingly the research community is interested in
problems that arise due to the large scale of the Internet
(e.g., BGP routing, performance of peer-to-peer systems).
For these sorts of problems, the potential to model the full-
scale AS-level topology is appealing. To date, the most suc-
cessful approach to modeling the AS-level topology is the
degree-driven approach of Inet. Inet predicts the degrees
of the topology by extrapolation from available data, then
constructs a topology meeting the degree sequence using a
preferential connectivity heuristic. We focus on two impor-
tant areas left open by prior work. First, we explore the
theoretical foundations of degree-based graph generation.
We identify the relevant results from graph theory, and ex-
ploit these to improve fundamental understanding and pro-
duce richer models. Second, essentially all prior AS-level
models have the characteristic that they contain extremely
limited semantics. The graphs produced are undirected and
unlabeled, hence they simply reflect connectivity without
any notion of additional semantic information. We address
the issue of adding semantics to network topologies, in the
areas of peering relationships and clustering into higher-
level groupings based on geographic and/or business rela-
tionships. Our techniques for adding semantics suggest new
methods for evaluating the quality of generated topologies.

I. INTRODUCTION

Models for network topology are necessary for simulation-
based studies of a variety of network problems. Early mod-
eling efforts focused primarily on router-level topologies [5],
[34] and attempted to capture geographic locality — that
is, network design favors shorter links, hence routers that
are geographically nearby are more likely to be connected
and cluster — and hierarchy — that is, the Internet is orga-
nized into administrative domains with greater likelihood
of intra-domain connectivity than inter-domain connectiv-
ity. The development of good router-level models has been
hampered by the difficulty of obtaining real data, as well as
the overwhelming scale of the router-level Internet topol-
ogy.

More recently, effort has focused on modeling the AS-
level topology, where the nodes of the graphs represent
autonomous systems (also called domains), and the links
represent the exchange of traffic and routing information
between the corresponding domains according to the Bor-
der Gateway Routing Protocol (BGP). AS-level modeling
has the appeal that data is available on (a portion of) the
AS-level Internet topology derived by peering with bor-
der routers (e.g., NLANR [9], Looking Glass [32]). One

can therefore determine some properties of the real data,
providing guidance in the development and evaluation of
models [8]. In addition, the full Internet AS topology is of
somewhat manageable size (on the order of 10,000 nodes
in 2001).

The research community currently has considerable in-
terest in problems that specifically arise due to the large
scale of the Internet, and therefore require simulations that
are “big enough” to reveal the issues and test candidate so-
lutions. Problems of this variety include stability and con-
vergence of BGP routing, efficiency and stability of peer-
to-peer lookup systems, and placement of server replicas.
For these sorts of problems, the potential to model the full-
scale AS-level topology is appealing.

There have been two main approaches to modeling the
AS-level topology. The first, typified by the BRITE gener-
ator [22], is evolution-based in the sense that it produces a
topology incrementally, by adding one node at a time to an
existing topology. BRITE uses the principle of preferential
connectivity to produce graphs with the skewed statistics
present in the real data. The second approach, used in the
Inet generator [16], is degree-driven. In particular, Inet
first predicts the degrees of the topology by extrapolation
from NLANR data, and then constructs a topology meet-
ing the degree sequence using a preferential connectivity
heuristic. The topologies generated by Inet come remark-
ably close to fitting the real data on some measures. This
has resulted in prevalent use of Inet, as well as a hypoth-
esis that degree distribution is fundamental in producing
topologies that match the real data [36].

We focus on two important areas unexplored by prior
work. First, we focus on the theoretical foundations for
degree-based graph generation, and exploit them to im-
prove fundamental understanding and produce richer mod-
els. Second, essentially all prior models of the AS-level
topology have the characteristic that they contain ex-
tremely limited semantics. The graphs produced are undi-
rected and unlabeled, hence they simply reflect connectiv-
ity without any notion of additional semantic information?!.
We address the issue of adding semantics to AS-level net-
work topologies, in the areas of BGP peering relationships
and clustering. Our clustering methods make novel use of
graph theoretic metrics and spectral filtering (eigenvalue-

n router-level modeling, there have been some efforts to add se-
mantics to topologies. For example, the transit-stub model in the
GT-ITM suite contains link weights that reflect routing semantics.



eigenvector) techniques 2, capturing strong global seman-
tics that reflect geographic proximity and/or business re-
lationships. The methods and the results are thus of sub-
stantial independent interest.

Our contributions include the following:

o Demonstration that degree-sequence is not sufficient for
producing topologies that are a good match to real data, in
the sense that one can produce topologies meeting the de-
gree sequence that differ significantly from one another and
from the real data. Such topologies can be useful as stress
tests for evaluating solutions, since they represent extremes
that are more plausible than purely artificial extreme test
cases (e.g., pure random graphs, regular graphs).

o A Markov chain Monte Carlo method to produce a ran-
dom graph meeting a target degree sequence, and evidence
that random graphs meeting a degree sequence are a good
match to real data in several metrics (comparable to the
quality of Inet).

o Enumeration of several important extensions of the fun-
damental graph theory, for example to produce a graph
that meets simultaneously a given in-degree sequence and
a given out-degree sequence.

o Development of a method to add peering relationship se-
mantics (provider-customer and peers) to a topology. This
method uses an iterated pruning technique to identify the
particular semantics to assign to each link.

o Application of the technique of singular value decompo-
sition to identify “clusters” of ASes. The ability to identify
high-level relationships between ASes (i.e., beyond local
neighbor relationships) is critical to ensuring that synthetic
topologies capture important coarse-grain characteristics.
High-level groupings may also be valuable for assigning se-
mantics to links (e.g., intra-group links may be of higher
bandwidth than inter-group links). Previous work has fo-
cused on hierarchy in the AS-level graph [38], [17], [36].
Stated with extreme informality, hierarchy captures the
“up-down” characteristics of AS relationships. ASes at the
same level of the hierarchy have no explicit relationship to
one another beyond similar “status”. Clusters, on the other
hand, capture relationships both within and across levels
of hierarchy, between ASes that form various communities
(typically business or geography based).

o Demonstration that while current methods for generat-
ing topologies may do a good job capturing hierarchy (in-
deed, hierarchy has been observed to follow when one meets
degree sequence [36]), these methods do not contain the
strong clusters present in the real data. This raises the
open question of generation methods that meet a degree
sequence while also incorporating clustering.

The balance of the paper is organized as follows. In
the next section we explore the theoretical foundations of
degree-based graph generation. We outline methods to
generate qualitatively different graphs meeting the same
degree sequence, as well as a Markov chain-based method
to produce a random graph meeting a degree sequence. In
Section III we evaluate the graphs produced using these

2Also known as Singular Value Decomposition, Principal Vector
Analysis and Latent Semantic Indexing.

methods and compare them to real AS-level data. We
then turn to methods for adding peering relationships (Sec-
tion IV) and for identifying clusters (Section V). We dis-
cuss related work in Section VI and summarize in Sec-
tion VII.

II. FOUNDATIONS IN DEGREE-BASED GRAPH
(GENERATION

In this section we provide the theoretical foundations for
degree-based graph generation. In particular, we review
the necessary and sufficient conditions for generating a con-
nected and simple graph meeting a sequence of target de-
grees. This review of the underlying theory points the way
to a construction algorithm that contains considerable flex-
ibility in generating a topological model while meeting the
degree sequence. The flexibility in the algorithm highlights
the fact that, in general, many graphs meet a given degree
sequence. This gives rise to the question of generating a
“random” instance from the space. We give an efficient
method for such random generation based on Markov chain
theory. In the next section we evaluate the properties of
models generated by using the algorithms developed in this
section.

A. Realizing a target degree sequence

Let n denote the number of nodes of the topology we wish
to generate. Let v;,1 < ¢ < n denote the nodes and d; >
ds > ... > d, denote the degrees of these nodes. We would
like to generate a simple graph, i.e., a graph without self-
loops or multiple links between a pair of nodes. In addition,
we want the topology to be a connected graph. We deal
with these two conditions separately.

In classical graph theory, we call a sequence of degrees
dy > ds > ... > d, “realizable” if and only if there exists
a simple graph whose nodes have precisely this sequence
of degrees. A necessary condition for a degree sequence
to be realizable is that for each subset of the k highest
degree nodes, the degrees of these nodes can be “absorbed”
within the nodes and the outside degrees, meaning that
there are enough edges within the subset and to the outside
to account for the necessary degrees of the k nodes. Stated
formally, for 1 <k <n —1:

n

k
ddi < k(k—-1)+ ) min{k,d;}

i=k+1

A classical theorem of Erdos and Gallai states that this
necessary condition is also sufficient [7], [4]. The proof is
inductive and provides the following natural construction
algorithm [12], [13]. The algorithm is iterative and main-
tains the residual degrees of vertices. In each iteration, it
picks an arbitrary vertex v and adds edges from v to d,
vertices of highest residual degree, where d, is the residual
degree of v. The residual degrees of the latter d, vertices
are updated appropriately. The significance of connecting
with d,, highest degree vertices is that it ensures the Erdos-
Gallai condition holds for the residual problem instance.



For example, the algorithm can start by connecting the
highest degree vertex with dy other high degree vertices and
obtain a residual degree sequence by reducing the degrees
of these vertices by one, and repeat the same process until
all degrees are satisfied, otherwise output “not realizable”.
Alternatively, the algorithm can connect the lowest degree
vertex d,, (or a randomly chosen vertex d;) with the d,
(resp. d;) highest degree vertices, reduce their degrees and
proceed as above.

Clearly the algorithm described above runs in linear
time. In addition, since the sequence in which it picks
vertices can be chosen, it provides the flexibility alluded to
above. For example, when we start with higher degree ver-
tices we get topologies that have very “dense cores”, while
when we start with low degree vertices we get topologies
that have very “sparse cores”. We elaborate the notion of
“core density” in Section III, however, it should be intu-
itively clear that these represent extreme instantiations of
topologies with a particular degree sequence.

The Erdos-Gallai condition allows for additional flexi-
bility, which results in topologies more closely resembling
real data and Inet output. The idea is to use the principle
of preferential attachment for choosing the d, vertices to
which v will be connected, rather than the maximum de-
gree d, vertices. Thus, the d, vertices will be chosen with
probabilities proportional to their residual degrees. After
each iteration, we need to ensure that the Erdos-Gallai
condition is satisfied by the residual graph (this part was
automatic in case maximum degree vertices a chosen). If
not, the probabilistic choice needs to be repeated. If it fails
several times, we can go back to choosing maximum degree
vertices.

Next, let us deal with the second requirement of obtain-
ing a connected topology. A necessary and sufficient con-
dition is that the graph must contain a spanning tree. To
contain a spanning tree, the sum of the degrees must be at
least 2(n —1). Suppose that the given degree sequence has
sum at least 2(n — 1). First construct a graph as stated
above. If this graph turns out to be unconnected, then one
of the connected components must contain a cycle. Let
(u,v) be any edge in a cycle and let (s,t) be an edge in
a different connected component. Clearly, the graph does
not have edges between the pairs u, s and v,¢t. By removing
the edges (u, v) and (s, t), and inserting the edges (u, s) and
(v,t), we merge these two components. Note that the re-
sulting graph still satisfies the given degree sequence. Pro-
ceeding in this manner, we can get a connected topology.

B. Generating a random graph

We have demonstrated that there are many ways to con-
struct a topological model while meeting the target degree
sequence. That is, we have the ability to generate instances
with particular structure (e.g., dense core, sparse core) us-
ing the above techniques. The ability to generate graphs
with particular structure is clearly useful in providing stress
test (or worst case) examples for evaluating solutions.

We now turn to the question of generating a random in-
stance from the space of all possible graphs that realize the

target degree sequence. The ability to generate a random
graph from this space is also clearly useful in understanding
the expected or average behavior of a solution.

For this purpose we draw on ideas from the theory of
Markov chain-based algorithms. In our case the Markov
chain is the following process. Start from any realization
of the given degree sequence, G. Pick two edges at random
in G, (u,v) and (s,t) with distinct endpoints, such that
(u, s) and (v, t) are not edges in G. Remove the edges (u,v)
and (s,t) and insert the edges (u, s) and (v,t) (repeatedly
performing such “local” perturbations is a standard tech-
nique in Markov chain-based algorithms [23], [30]; in the
context of Internet topologies they can be thought of as
“small rewirings” [37]). Observe that the resulting graph
does satisfy the given degree sequence. We further have to
check whether it is a connected graph. If it is connected
then we perform this switching operation, otherwise we do
not.

It follows from a theorem of Berge and Taylor [4], [31]
and from Markov chain theory [23], [30] that, independent
of the starting point, in the limit, this procedure will reach
every possible connected realization with equal probability.
Hence, in the limit, the Markov chain-based algorithm will
generate a random (or “typical”) topology with the given
degree sequence. To be practical, we must address the
question of the time needed to simulate the process before
we are close to its limiting condition, as well as the method
for detecting when sufficient steps have been taken (i.e., a
stopping rule).

Our stopping rule is derived from a non-isomorphism
measure between the starting topology and the topology
at some point of the simulation. Recall that these topolo-
gies have the same degree sequence. For all nodes that
have unique degrees (i.e., no other node has the same de-
gree), we sort their neighbors by degree and compute the
total number of entries in which the two sorted lists differ.
Intuitively, we expect that the larger this difference count
becomes, the more “different” the graphs are.

As we simulate the Markov chain, we find that this dis-
tance measure initially grows almost linearly and then lev-
els off. Let T denote the time (number of steps) in which
the measure levels off. As a heuristic, for instances with
up to 12000 nodes (such as today’s AS-level topology), we
recommend running the simulation for 37" total steps. As
points of reference, we find T to be less than 10,000 for a
3000 node graph similar to the NLANR data set in Decem-
ber 1997. For a 7500 node graph similar to NLANR data in
December 2000, T was less than 75000. For a 11000 node
graph similar to the U. of Michigan data set [14], T was
less than 180000.

C. Extensions

There are several extensions to the fundamental graph the-
ory presented in this section. While we do not exploit all
these extensions in the present paper, we believe they offer
potentially powerful tools for topology modeling. Specifi-
cally, we have the following capabilities:

o If the underlying graph has weights, representing for ex-



ample more likely or less likely edges (e.g., cheaper, shorter,
more compatible), then we can generate a topology of min-
imum cost. For this we need some additional notions from
matching theory (along the lines of [4], [19], [20]). The final
algorithms can be implemented efficiently using heuristics
along the lines of [35].

« If we consider directed graph models, representing for ex-
ample important peering relationships ([10], [17] and Sec-
tion IV), then there is analogous graph theory (based on
flows) to generate a directed graph that satisfies simultane-
ously a given in-degree sequence and out-degree sequence
[4].

o If the generated degree sequence is not realizable, it can
be shown that a simple adaptation produces a graph whose
degree sequence minimizes the /3 norm from the given de-
gree sequence. We can thus get an optimal efficient ap-
proximation.

e The Markov chain simulation method is a special case of
Metropolis algorithms that aim to optimize some criterion
of interest. Thus Markov chains can be used as “control”
or optimization mechanisms to reach a certain target.

III. EVALUATION OF DEGREE-BASED GENERATION
METHODS

In this section we evaluate the properties of the topologies
produced by the algorithms developed in the previous sec-
tion. We must note that topology evaluation remains an
open area, with two primary challenges. The first concerns
the collection of real data to use as the basis for comparison.
The process of collecting data on the real AS-level Internet
topology is imperfect. The Route Views data archived by
NLANR [9], which many have used as a comparison point,
has recently been shown to be missing a significant number
of nodes (ASes) and edges (peering relationships). More re-
cent results from U. of Michigan [37][14] are more complete
but certainly still miss data. The second challenge is the
question of what measures to use in evaluating topologies.
A number of measures have been proposed in other work,
and we make use of some of these in this section. The sec-
ond part of this paper proposes additional measures that
attempt to capture coarse structural characteristics that
we believe are important.

We consider topologies generated with particular struc-
ture as well as random topologies. Our evaluation leads to
the following conclusions:

o Degree-sequence is not sufficient for producing topologies
that are a good match to real data, in the sense that one
can produce topologies that differ significantly from one
another, despite meeting the same degree sequence.

e On the question of convergence of the simulation to a
typical graph based on standard evaluation measures, we
provide evidence that about 50,000 steps are sufficient for
convergence for a smaller graph of about 7500 nodes and
100,000 steps are sufficient for convergence for a larger
graph of about 11300 nodes.

o Randomly generated topologies meeting the degree se-
quence are a fairly good match to real data for several
metrics (e.g. compare to Inet on all the metrics that Inet

Michigan | Inet2.2 | Dense Core | Sparse Core

diameter 9 13 5 29

avg path len. 3.56 3.86 3.56 5.60
avg eccentricity 6.45 8.72 4.13 17.87
TABLE 1

LARGE TOPOLOGIES (11375 NODES, 32287 EDGES)

NLANR | Inet2.2 | Dense Core | Sparse Core
diameter 10 13 6 22
avg path len. 3.69 3.79 3.78 4.96
avg eccentricity 6.76 8.62 5.03 13.86
TABLE II

MEDIUM TOPOLOGIES (7657 NODES, 15718EDGES)

performs well).

A. Topologies with particular structure

For the same degree sequence, we generate models of three
types: sparse core, dense core and preferential, using the
basic ideas outlined in the previous section. We have done
this using a number of degree sequences, with similar high-
level results. Table I shows a set of measures for a topology
of 11375 nodes and 32287 edges. We have taken the degree
sequence from the more complete Michigan data; we have
also run (the most recent version of) Inet with this degree
sequence. We show the results for both the sparse core
and dense core instances; the preferential instance falls be-
tween these two. The measures shown are diameter, av-
erage shortest path length and average eccentricity. The
eccentricity of node i is the longest distance from i to any
other node. We average the eccentricity across all nodes.

We first focus on the sparse and dense core instances.
Most striking in these results is the extreme difference in di-
ameter and average eccentricity in the two instances. Con-
sistent with intuition, the sparse core has relatively very
large diameter and eccentricity. While not as extreme as
the differences in diameter and eccentricity, we also observe
significant differences in the average shortest path length,
with a factor of about 1.5 from the dense to the sparse core
measure.

Table IT shows similar results for a smaller topology of
7657 nodes and 15718 edges. In this case the real topology
data comes from NLANR. These results are qualitatively
similar to the larger topology. From this, it is clear that
agreement on degree sequence, alone, does not ensure that
topologies are similar.

B. Random topologies

We next examine the convergence properties of the Markov
chain algorithm. For this purpose, we use each of the two
topologies from the previous subsection as a starting point,
then capture snapshots while running the simulation. We
use the same two sizes — a large topology and a medium
topology. Table III shows a set of measures for the snap-
shots of a simulation that begins with a sparse core of the



0 25K | 50K | 100K | 300K | 600K
diameter 29 13 11 11 10 10
avgspl 5.60 3.57 | 3.41 3.36 3.35 3.35
avg-eccentricity | 17.87 | 9.00 | 7.42 7.35 7.00 6.56
TABLE III

LARGE TOPOLOGY SIMULATIONS, SPARSE INITIAL CORE

0 25K | 50K | 100K | 300K | 600K
diameter 5 10 10 10 10 10
avgspl 3.56 | 3.23 | 3.32 | 3.35 3.35 3.35
avg-eccentricity | 4.13 | 7.14 | 6.84 6.74 7.08 7.05
TABLE IV

LARGE TOPOLOGY SIMULATIONS, DENSE INITIAL CORE

large size. Each column corresponds to a different snap-
shot, and the column heading indicates the number of sim-
ulation steps when the snapshot was taken. The column
labeled “0” corresponds to the initial starting point (and
hence repeats part of the data in the two prior tables).
Table IV shows the same measures when running the sim-
ulation beginning with a dense core. Tables V and VI show
the snapshots when starting with sparse and dense cores of
the medium size.

There are several observations of interest. First, the
greatest difference in the measures occurs from the initial
state to the first snapshot taken after 25,000 steps of the
simulation. This is most dramatic for the diameter and
eccentricity measures, which started out most clearly af-
fected by the dense or sparse core. For example, the diam-
eter of the dense core topology doubles after 25,000 steps,
while the diameter of the sparse core topology approxi-
mately halves.

Second, we comment on the number of steps needed to
reach convergence on these measures. For the larger topol-
ogy, after 100,000 steps of the simulation, the measures are
within 10% of one another, regardless of whether the ini-
tial state had a dense core or a sparse core. For the smaller
topology, the measures are generally within 10% of one an-

0 25K | 50K | 100K | 150K | 300K | 600K
diameter 22 13 12 12 11 11 12
avgspl 4.96 | 3.51 | 3.46 | 3.47 3.45 3.47 3.46
avg-eccentr | 13.86 | 8.29 | 7.74 7.67 7.50 10.0 10.42
TABLE V
MEDIUM TOPOLOGY SIMULATIONS, SPARSE INITIAL CORE
0 25K | 50K | 100K | 150K | 300K | 600K
diameter 6 12 12 11 12 12 12
avgspl 3.78 | 3.42 | 3.45 | 3.46 3.45 3.45 3.47
avg-eccentr | 5.03 | 7.65 | 8.50 | 7.38 8.24 7.97 8.31
TABLE VI

MEDIUM TOPOLOGY SIMULATIONS, DENSE INITIAL CORE

other after 50,000 steps. One exception is the eccentricity
measure in the later snapshots for the sparse core.

Third, we note that the average shortest path length ex-
hibits strong stability, with variability of only about 1%
after convergence. Diameter and eccentricity exhibit vari-
ability of about 10%.

IV. AS-GRAPH SEMANTICS: PEERING RELATIONSHIPS

We now turn to the question of semantics associated with
AS-level topologies. We begin by developing a method
to add peering relationship semantics to a topology. This
method uses a pruning technique to decompose the topol-
ogy into layers. In the next section, we consider the issue
of higher-level clustering of ASes.

A. Peering relationships

To date, topology modeling has largely concentrated on
capturing the connectivity between entities (routers, ASes).
This is reasonable in the sense that connectivity is perhaps
the most basic characteristic of a topology. On the other
hand, Internet routing is significantly determined by peer-
ing relationships between autonomous systems (provider,
customer, peer, sibling), hence information about these re-
lationships is important in any model used for simulation
purposes. In the absence of peering information, many
studies simply use shortest paths in the base topology, de-
spite the well-known fact that Internet paths are generally
not shortest paths.

Our method for adding peering relationships uses an iter-
ated pruning technique that decomposes the topology. The
starting idea of iterated pruning lies in the work of Falout-
sos et al. who observed that by pruning all trees, they were
left with approximately half of the nodes [8]. Faloutsos et
al. called this the “core”, and suggested that this decom-
position could simplify the generation procedure, since the
trees and the core could be generated independently.

A useful way of viewing the Faloutsos decomposition is
that they are removing vertices of degree one from the
graph, updating the residual degrees each time, until there
are no more. This will precisely remove all trees. Let us
generalize this as follows. Start with ¢ = 1. Repeatedly
remove all vertices of degree at most ¢ and update residual
degrees. When there are no more vertices of degree less
than or equal to %, increase ¢ by one. Define the “level” of
each vertex to be the value of i when it was removed. In-
tuitively, this is a decomposition of the graph into regions
of increasing density. For example, if the network contains
a clique (completed connected subgraph) of size ten, the
pruning procedure will take at least ten iterations.

We propose the following method for adding peering rela-
tionship semantics to an undirected topology. The method
uses two parameters, k and m. Informally, k represents
a lower bound on the number of peering relationships a
node has before it is likely to be a provider, while m rep-
resents the number of Tier 1 providers (i.e., nodes with no
upstream providers). These parameters reflect the intu-
itive (and experimentally verifiable) notions that most of
the peering relationships for small ASes are due to their



providers, while most of the peering relationships for large
ASes are due to customers and peers.

The method operates as follows:
Step 1: Perform iterated pruning on the undirected topol-
ogy. During the first k iterations, each time a node u is
pruned and links (u,v) are removed, assign to these links
a direction from u to v.
Step 2: Sort the nodes by decreasing total degree. Con-
sider the m highest degree nodes. For each node w in the
set of highest degree nodes, assign to all links (w, z) a di-
rection from w to x.
Step 3: If a link between u and v has been assigned a
direction from u to v, then define u to be a customer of v
and v to be a provider of u. If a link between u and v has
been assigned both directions, then define v and v to be
peers or siblings (we do not distinguish these).
Step 4: If any links have not been assigned a direction, de-
fine a peering relationship using some probabilistic princi-
ple. (In our implementation we assigned peer/sibling with
high probability (80%), and customer-provider from higher
to lower degree with lower probability (20%); of course
these probabilities can vary.) The frequency of unassigned
links will depend on the parameters k and m used in Steps
1 and 2 above. A high instance of unassigned links is an
indication that k£ and m should be adjusted, by increasing
k and/or m.

B. FEvaluation and new power laws

We used Gao’s script [10] over NLANR data for eight snap-
shots of the Internet six months apart, between November
1997 and May 2001. As above, if v is a provider of u we
introduce a link directed from u to v. If u and v are peers
or siblings we introduce two directed links, one from u to
v and one from v to u. We thus now have for every node
an in-degree and an out-degree. Define further total degree
to be the total number of providers, customers, peers and
siblings. We report the following new power laws?.

Let us rank vertices according to their indegree, that
is the number of customers and peers/siblings. Then for
small ranks, the indegree of the vertex with rank ¢ is pro-
portional to i%, for o between -.98 and -.75, with Pearson
correlation coefficient at least 90%; see also Figure 1. In
addition, this « is practically identical to the rank versus
total degree power law of Faloutsos et al [8]. This expresses
the intuitive fact that when we look at nodes of very high
degree, representing big providers, almost all of the degree
is due to customers and peers/siblings.

The previous power law characterizes big providers. The
next power law characterizes small customers. For small i,
the number of vertices that have outdegree i, meaning ¢
providers and peers/siblings, is proportional to %, for «
between -2.17 and -2.25, with Pearson correlation coeffi-
cient at least 75% (and in all cases, at least as good as [8]);
see also Figures 2 and 3. This « is consistently slightly
smaller than the corresponding exponent of the frequency

3Below, note that what we call in this paper “total degree” is called
in [8] “outdegree”, while what we call in this paper “indegree” and
“outdegree” is not examined in [8]
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Fig. 2. The outdegree power law

versus total degree power law of Faloutsos et al. [8], which
for the snapshots that we have used we measured between
-2.69 and -2.87%. This means that, for low degree vertices,
there is strong correlation between total degree and outde-
gree, expressing the intuitive fact that most of the peering
relationships of small ASes is due to their providers.

We applied the algorithm of Section IV.A adding peer-
ing relationships to the eight snapshots of NLANR data
discussed in Section IV.B. We compared the in-degree and
out-degree plots of the generated directed graphs, to the
corresponding plots of directed graphs obtained by running
Gao’s script. The slopes were nearly indistinguishable and
the Pearson coefficients comparable. In addition, the peer-
ing relationships inferred by the algorithm of Section IV.A
agreed, in all cases, with at least 85% of the peering rela-
tionships inferred by Gao’s script. This can be thought of
as a preliminary favorable evaluation of the approach taken
by the algorithm of Section IV.A. More work remains to
be done in defining evaluation metrics for directed graphs
and suitable to assess peering relationships. We leave the
definition of such metrics as an important open question.

4To be precise, we took the union over seven consecutive days.
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C. Remarks

One might envision an alternative method, in the spirit of
Inet, and along the extensions discussed in Section II.C.
Specifically, since the indegrees and outdegrees of the real
data can be measured using [10] or [17], generate two se-
quences of integers one representing indegrees and one rep-
resenting outdegrees (extrapolating from the real data like
Inet), and interpolate a graph that simultaneously satis-
fies both (as in Section II.C). The problem with this ap-
proach is that even though power laws hold on both ends
of total degrees (high degree nodes following rank and low
degree nodes following frequency), they only hold on the
high end of indegrees (rank) and the low end of outdegrees
(frequency). One can verify from total degree summation
principles that power laws cannot hold on high and low
ends of indegrees and outdegrees simultaneously. Hence it
is not obvious how to generate distinct indegree and out-
degree sequences separately.

V. AS GrAPH SEMANTICS: CLUSTERING

In this section we initiate a study of clustering in AS topolo-
gies. We use adaptations of spectral filtering techniques as
efficient heuristics to identify groups of ASs with good clus-
tering properties.

Firstly, we have identified a variety of clusters in real
AS topologies. In addition to passing clustering metrics,
these clusters express natural semantics such as geographic
proximity, or similarity of interests such as business or re-
search. Thus, the identified clusters are of their own inter-
est, since they capture coarse-grain characteristics. They
may be able also valuable for assigning semantics to links
and for simulation purposes(intra-group links may be of
higher bandwidth or experience higher demand of inter-
group links).

Next, we applied the same clustering techniques to syn-
thetic data sets. The clustering properties of topologies
produced by all generators driven purely by degree se-
quence, namely, Inet and its derivatives discussed in Sec-
tion II, and Brite without setting on the geography pa-
rameter, are clearly substantially weaker than those of real
data. Indeed, this was expected, since there appears to be

no intuitive reason why meeting a particular skewed (or
any) degree sequence is correlated with clustering. On the
other hand, Brite, with the geography parameter turned
on, can produce topologies with stronger clustering prop-
erties. We hence conclude that topology generators driven
purely by the degree sequence are not sufficient to capture
all global properties of real Internet topologies.

We should stress that finding the most suitable adapta-
tion of the generic spectral filtering approach to the spe-
cific application is an involved technical problem in its own
right. We discuss this in Sections V.C and V.D.

A. Hierarchy and Semantics as Global Semantics

Degree-sequence and peering relationships are local prop-
erties and express local characteristics of the ASs and their
connections. These AS connections (adjacencies with or
without peering relationships) can be also thought of as ex-
plicit efficient descriptions of these local semantics. What
are important global characteristics of the AS topology?
Following long standing practices of several fields that have
studied semantics and scaling in large data sets [21], [29],
(2], [18], [11], [26], [27], [3], [25], we claim that the two
fundamental global characteristics are hierarchy and clus-
tering. In the context of Internet topologies, this has been
first stated in [39], [5] and it forms the core of GT-ITM,
and it is intuitively also clear that hierarchy and clustering
are particularly relevant for all modeling and simulation
purposes. Note that, given the adjacencies of a graph, hi-
erarchy and clustering are not explicitly described (if fact,
they are not even well defined) and, typically, have to be
inferred in non-trivial ways.

Hierarchy for Internet topologies at the AS level has
been studied in [38], [17], [36]. [38] obtain a hierarchy
of several levels where, roughly speaking, the “level” or
“size” or “class” of an AS is one step below the level of
the “smallest” provider of this AS. Using more detailed
methods, data, measurements and validation arguments,
[17] obtain a hierarchy of dense core (level 1), transit core
(level 2), outer core (level 3), small regional ISPs (level 4)
and customers (level 5). Most importantly and relevant to
our work, [28], [36] introduce several new metrics aiming
to capture, among other, hierarchical properties, and con-
clude that topology generators meeting the local character-
istic of degree sequence also yield good results with respect
to the global characteristic of hierarchy.

Here we initiate the study of the other fundamental
global property, namely clustering. First of all, let us note
that hierarchy and clustering need not be correlated (they
follow mostly independent primitives). For example, a clus-
ter driven from geography may contain ASes of different
“size” (as we shall see, this is indeed the case), and a hier-
archical class may contain parts of several different clusters
(there is also some natural correlation, for example, as ex-
pected, the dense core is also a cluster). In addition, while
hierarchy is a strict partitioning of the ASs, in the sense
that each AS belongs to exactly one level of the hierarchy,
clustering is not a partitioning. Not every AS needs to be-
long to a good cluster, and perhaps some ASs belong to



more than one clusters (for example, a very big European
ISP provider may belong to a cluster expressing the very
big providers around the globe, and to cluster expressing
Europe).

B. Preliminaries on Clustering and Spectral Filtering

How shall we define clusters, and how shall we find them?
To define and quantify clustering properties, we draw on
graph theoretic metrics for relative density [6]. Roughly
speaking, for a graph G(V, E) and for a set of nodes S C V,
the relative density of S is the ratio of links that are entirely
inside S, namely both endpoints belong to S, divided by
the total number of links incident to S, namely links inside
S plus “crossing” links with one endpoint in S and the
other in V'\ S:

H{{v,u} € E : v€S and ueV\S}
{{v,u}€E : vES or ue S}

Intuitively, S is a good cluster if the relative density of S
is large®.

To efficiently isolate groups of ASs with good clustering
properties we draw on spectral filtering heuristics from the
field of Information Retrieval and data-mining. These are
fairly sophisticated technical methods. They are also strik-
ingly strong and robust, in the sense that they have been
successful in a wide range of applications, such as biblio-
metrics, digital libraries, data-mining in massive datasets,
the Genome project, and inferring authorities and commu-
nities in the WWW [21], [29], [2], [18], [11], [26], [27], [3],
[25].

Spectral filtering is spectral analysis of graphs. The
“spectrum” of a graph is a listing of the eigenvalues of
(a suitable modification of) its adjacency matrix in non
increasing order. Look at Figure 4. For a graph con-
sisting of two (dense) connected components A and B,
we will get a spectrum whose first two largest eigenvalues
are \; = Ay = 1. The corresponding eigenvectors assign
weights +2 on A and 0 on B, and +y on B and 0 on A
respectively. Each connected component can be thought of
as an extreme case of a cluster. The two largest eigenval-
ues and the corresponding eigenvectors, precisely indicate
these two clusters. Look at Figure 4. For a graph consist-
ing of two connected components connected with a “small”
number of edges, we observe a slight shift of the previous
values. In this case the second largest eigenvalue is 1 — €
(for some positive € very close to 0) and, for ' and y' dis-
tinct and positive, the corresponding eigenvector assigns
values approximately equal to z’ to all vertices in A and
approximately equal to —y’ to all vertices in B. The sec-
ond eigenvector again indicates the clusters A and B; let
us call such a vector e4 p Similar remarks hold also for the
clusters C' and D. However, the most interesting case is
when we consider the union of the clusters A, B, C', and D

5For several technical and aesthetic reasons beyond the current
scope, graph theorists mostly use metrics related to the inverse of
relative density for which they use terms like “expansion”, “magnifi-

cation”, “conductance”, or “isoperimetries” [6].
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over the same set of vertices. We would now get the sec-
ond and third eigenvalues Ay = 1—¢' and A3 =1 —¢” with
corresponding eigenvectors very close to e4,p and ec,p,
still indicating the clusters A, B, C, and D! In general,
when the graph contains many overlapping clusters, this
is a general purpose heuristic for isolating the strongest
such clusters. It isolates “latent”, “hidden”, in our case
global and not explicitly expressed clustering semantics of
the graph (hence also the name Latent Semantic Indexing).

Of course, this general purpose method requires several
adjustments to each specific application. In some sense,
despite the fact that Faloutsos et al had given a first spec-
tral snapshot of the AS-level topology by their eigenvalue
power-law [8], they did not perform any adjustments to
the raw data and thus were not able to apply the general
method.

2

Fig. 4.

C. Adaptation of Spectral Filtering to AS Topologies

In this section we will describe the process of constructing
an appropriate matrix for the AS topology on which we
will perform spectral filtering to identify clusters.

Let A be the adjacency matrix of a graph. If all edges are
bidirectional, then A will be symmetric (4 = AT). Sym-
metric matrices have the property that all eigenvalues and
eigenvectors are real. This makes the analysis of the results
possible. Assume that e; and \; are the i-th eigenvector
and eigenvalue. The maximum value of A; can be as high
as the maximum degree in the graph [19]. The intuition
behind spectral analysis is that the best clusters will be
identified by the eigenvectors for which their correspond-
ing eigenvalue is large enough. Also, a graph has better
clusters when there are many large eigenvalues.

We will not use matrix A directly, since working with
arbitrarily large A;’s is not suitable. (In fact, [1] ex-
plain that for the AS topology, the first eigenvalues ex-
press the “stars” of small clients connected to the largest
ISPs and even the eigenvalue power law measured in [8]
is a re-statement of the rank-degree power law with half
the slope.) Instead we define the stochastic matrix Agw .
For each entry (i,7) of the matrix we have: Apw [i,j] =
Ali,]/d;, where d; is the degree of node i. For tech-
nical reasons beyond the scope of this article, spectral
analysis will be performed on the following variation of
Apw: Ay = 3(I + Arw). The eigenvalues of this ma-
trix are in [0,1], the largest being 1, or in other words:
I=X>M>NA>...>0.

The AS topology matrix is undirected if we do not take
into account the relationships between the ASes. If, on
the other hand, we label the edges as customer-provider



and peer-to-peer, as was explained in Section IV, then the
resulting graph is directed. An edge from i to j exists if and
only if 7 is a customer of j, or i and j are peers. We used
the data provided in [17] to create the AS-topology graph
and label the edges. This graph is not symmetric. Thus,
we define A* = A - AT. The interesting property of this
matrix is that each entry (i, j) is equal to the number of
ASes that are children of both AS i and j, or peers of both
of them (plus 1 if there is an edge between 7 and ). In doing
so, we put more weight on pairs of ASes that have many
customers and peers in common and in this way are related
to each other stronger. For example, if there are many
customers that peer with two ASes, then these two ASes
have some common properties (like located in the same
area, or targeting the same group of customers) and we are
able to identify them even if they do not directly peer with
each other. This technique is also known as co-reference
or bibliometric coupling, and was used by Kleinberg in his
seminal work of computing semantics on the WWW [18].

A primary additional modification that we have made
was to not use all the ASes to construct the matrix A. We
have pruned the ASes that were assigned to level 5 of the
data [17] and which correspond to small customers. In this
way we are examining only the approximately 2200 more
important ASes. This is a crucial modification. It avoids
the complications created by the stars which exist in the
topology when many small customers use the same ISP.
Theoretically, this has been explained in [1]. It turns out
that in the heuristic method of spectral filtering, stars and
small ISPs overwhelm all other clusters and we have to
avoid them.

Finally, let us stress that all spectral filtering methods
are heuristics. Thus, give approrimate results and require
additional processing at each step [24] [33].

D. Results

We used the techniques discussed above to investigate the
existence of clusters in the AS topology and to identify
them.

We will give three concrete examples of the clusters that
were identified using this technique. These can be found in
Tables VII ,VIII, and IX. In these tables, we list some of
the ASes that belong to each cluster. The first of them
is a cluster of big ISPs in the US. This cluster corre-
sponds to the eight larger eigenvalue (there are technical
but well-understood reasons why most important cluster
corresponds only to the eighth eigenvalue; roughly speak-
ing, the very large number of non-trivial customers of these
ISPs decrease its relative density metric). The cluster was
created because big providers tend to peer with each other
Similar results have been already reported in ([38], [17]).
This confirms our method which correctly identifies the
dense core as a good cluster. However our methods are
generic and can identify clusters that are difficult to infer
with other techniques.

A sample of the nodes in the second cluster can be found
in Table VIII. In this case the cluster is the result of an ef-
fort to connect national research and educational networks

in Europe and elsewhere. This cluster has different char-
acteristics from the previous one, since the ASes do not
tend to peer a lot with each other. Instead they connect
to backbone networks like Ten-155 and Abilene and use
them as ISPs. Most of the ASes connect to one of them or
both, and there are examples like SingaREN that connects
to SURFnet.

Another example of a cluster we identified using the
eigenvector that corresponds to the fourth larger eigenvalue
is shown in Table IX. As we can see, it is composed of ASes
from the eastern part of Europe (mostly Ukraine and Bul-
garia). The interesting thing that links most of them is
that they receive service from the Satellite Media Services
ISP, which has its headquarters in UK.

By examining more eigenvectors, it was possible to dis-
cover more clusters, like national research and educational
networks, clusters of providers in different continents and
countries and so on. Also, by altering the basic method
by which we construct the matrix (for example by taking
into account all ASes), we were able to identify clusters
with different characteristics. As a concrete example the
eigenvector which corresponds to the largest eigenvalue (ex-
cluding the trivial one) for the full graph except the nodes
that have degree 1 gave around 150 ASes from South Ko-
rea. It is an area of future research to understand what are
the different kinds of clusters and which method is more
suitable in identifying them.

In the discussion above, it was not very clear how we
picked the clusters and selected the results we have pre-
sented. Our approach was to examine the ASes that have
the highest negative and positive weights in the eigenvec-
tor. We assumed that the first n of them were part of
the cluster. The size of n, which is the size of the cluster,
is also technical to find. Roughly speaking, we order the
ASes according to the weights assigned by the eigenvec-
tors, and look for points where there is a big drop in the
size of the weight. This is only one way of identifying can-
didate groups. Having more criteria is an important open
problem. We believe that several more criteria exist.

E. Clusters and topology generators

In the previous paragraphs, we observed that there are clus-
ters in the AS topology and that spectral graph analysis
can be used to identify them. Since clusters are an integral
part of the Internet, the next question in mind is whether
topology generators generate graphs with clusters and how
close they are in capturing this property of the graph.

To measure the quality of the clusters, we computed the
first 30 eigenvalues of two random topologies generated
with Brite and three with Inet and compared them to the
real data. The topologies generated where for 11000 nodes.
From the generated graphs, we isolated the 2200 ones with
the highest degree. We used this heuristic to isolate the
core of the network. The eigenvalues were computed for
the induced subgraph. The reason that these many nodes
were picked was to be able to compare the results with the
ones presented in the previous section for the real data.
However, we got similar results when we used the Algo-



AS number | Description Weight level
2828 | XO Communications | -1.3089%e-02 | 1
Inc.
7018 | AT&T -1.3085e-02 | 1
1239 | SprintLink -1.2687e-02 | 1
2548 | Digex -1.2571e-02 | 1
3967 | Exodus Communica- | -1.2382e-02 | 1
tions
1 | GTE Internetworking -1.2282¢-02 | 1
701 | Alternet -1.2204e-02 | 1
2685 | AT&T Americas -1.2024e-02 | 2
2914 | Verio -1.1851e-02 | 1
209 | Qwest -1.1773e-02 | 1
293 | ESnet -1.1642e-02 | 2
3549 | Global crossing -1.1465e-02 | 1
3561 | Cable & Wireless -1.1369e-02 | 1
4006 | NetRail, Inc. -1.1209e-02 | 1
Four entries missing 3,4,2,2
174 | Performance Systems | -1.0862e-02 | 1
International
4200 | Telia Internet -1.0801e-02 | 1
One entry is missing 4
1833 | TeliaNet USA -1.0779e-02 | 1
Three entries missing 3,3,4
3356 | Level 3 Communica- | -1.0645e-02 | 1
tions
6453 | Teleglobe Canada Inc -1.0582e-02 | 1

TABLE VII
Sample of a cluster that shows big providers in the North

America

rithm of Section IV.A to add peering relationships on the
Inet output and pruned ASes that had no customers and
either (a) a single provider or (b) at most two providers.
We obtained the same qualitative results. As it can be seen
in Fig.5, the degree-driven topology generator Inet is not
good in creating clusters.

A natural question to ask metrics of “goodness” of clus-
tering. (Note that the “clustering coefficient” of [36] is not
adequate, in the sense that Inet and real data have similar
clustering coefficients, but substantially different spectra of
the type of Table 5; it is generally accepted in graph the-
ory that spectral images are strong indicators of clustering
[6]). From the first 20 eigenvectors computed from the real
topology, we measured the value of the relative density for
the groups composed of the first 1, 2, ..., 200, nodes. The
choice of 200 is ad-hoc. For each cluster size, we computed
the mean relative density among all groups. We have also
computed the 10th and 90th percentiles. The same pro-
cess was repeated for the first 20 eigenvectors produced by
Inet. Finally, we created 20 random sets of 200 nodes each
and calculated the same metrics for cluster size from 1 to
200. The results are depicted in 6. In that graph higher
values are better. As we can readily observe the clusters
produced by Inet are better than the random ones, but not
nearly as good as the ones found in the real topology. This
gives more evidence that topologies generated by Inet and
other degree-sequence generators cannot generate topolo-
gies with good clusters.
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AS number | Description Weight level
Four entries missing 4,4, 4,4
(part of RENATER)
11537 | Abilene 2.4370e-01 | 2
Four entries missing 4,4,4,4
(part of RENATER)
8933 | Ten-155 (Europe’s Re- | 2.1987e-01 | 2
search and Education
backbone network)
293 | Energy Sciences Net- | 2.0666e-01 | 2
work (in US)
2200 | Renater 2 (in France) 2.0470e-01 | 2
10764 | Science, Technology | 2.8422e-02 | 3
and Research Transit
Access Point
2603 | NORDUnet (Nordic | 1.3707e-02 | 2
Internet highway)
1103 | SURFnet (in Nether- | 1.3384e-02 | 3
lands)
6509 | NTN BELL2 MBONE | 1.3348e-02 | 3
Service
378 | ILAN (Tel Aviv Uni- | 1.2593e-02 | 3
versity, Israel)
680 | DFN-IP (in Germany) | 1.2444e-02 | 2
5408 | Greek Research and | 1.0021e-02 | 4
Academic Network
513 | CERN 9.6932e-03 | 3
786 | JANET IP Service (in | 9.3910e-03 | 3
UK)
7610 | SingaREN (in Singa- | 9.0508e-03 | 3
pore)
3343 | RUNNet (in Russia) 9.0268e-03 | 4
766 | RedIRIS (in Spane) 8.5164e-03 | 4
1930 | Portuguese Academic | 8.4781e-03 | 4
and Research Network
1955 | HungarNet (in Hun- | 8.4354e-03 | 3
gary)
559 | SWITCH, Swiss Aca- | 8.3855e-03 | 4
demic and Research
Network

TABLE VIII
Sample of a cluster that shows Research and Education

Networks mostly in Europe,but also elsewhere

Bestnon-trivial eigenvalues
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Fig. 5. The largest 30 eigenvalues for the real AS topology

and for topologies generated by Inet and Brite.



AS number | Description Weight level
13228 | DG ISP, Ukraine -3.2116e-01 | 3
3252 | Relcom-Ukraine ISP -3.0050e-01 | 3
5415 | Global Ukraine Ltd. -2.4365e-01 | 3
12963 | UA.LDC, Ukraine -2.2718e-01 | 3
12369 | UKRSAT, Ukraine -2.0871e-01 | 4
12294 | Technological Systems | -2.0750e-01 | 4
CJVC, Ukraine
8343 | DOnbass Regional | -1.9464e-01 | 4
Information  System,
Ukraine
6846 | UKRPACK.NET, -1.8437e-01 | 3
Ukraine
8717 | Spectrum Net, Bul- | -1.8017e-01 | 4
garia
9184 | NetPlus, Bulgaria -1.7580e-01 | 3
9154 | Internet Bulgaria Ltd. -1.7149e-01 | 4
9127 | NETISSAT, Bulgaria -1.7149e-01 | 4
12304 | Yerevan Physics Inti- | -1.6856e-01 | 3
tute, Armenia
6886 | INTS, Ukraine -1.6246e-01 | 3
9000 | ESER, Turkey -1.5361e-01 | 3
12358 | Minsk, Belarus -1.4905e-01 | 4
8788 | Adamant ISP, Ukraine | -1.4440e-01 | 4
6702 | Apex NCC, Ukraine -1.3972e-01 | 4
13249 | PFTS, Ukraine -1.3972e-01 | 4
6876 | TeNeT, Ukraine -1.3707e-01 | 3
13126 | Satellite Media Ser- | -1.3234e-01 | 3
vice, UK
TABLE IX

Sample of a cluster of networks in Eastern Europe

the cluster. dbythe portion of
04 T

Portionofedgesinthegroup

e
50 100 150 200
Numberof ASesinthegroup

Fig. 6. Relative density for groups found in the AS-topology,
for groups generated by Inet and random groups.

VI. RELATED WORK

n the area of topology generators, we have already men-
tioned the Inet degree-based generator and the Brite evo-
lutionary generator. There are a number of further ex-
amples in the evolutionary category, though these do not
specifically aim to model AS-level topology. Further, the
evolutionary models generally do not agree as closely with
real data as Inet. We are unaware of any work beyond Inet
that directly uses the degree sequence, perhaps because Inet
has generally done well for a set of metrics.

Some of the early router-level topology generators do in-
corporate some notion of semantics. For example, one form
of Waxman graphs use the Euclidean distance between two
nodes to affect the probability of an edge. One could use
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the Euclidean distance as a weight to reflect, for exam-
ple, link delay. The transit-stub model in the GT-ITM
suite assigns routing policy weights to links so that short-
est paths constructed using the policy weights have certain
properties. For example, the path between two nodes in a
domain will remain in the domain; the path between two
nodes in different domains will traverse a transit domain
unless there is a stub-stub edge that gives a shorter path.
Transit-stub graphs also contain a form of higher-level se-
mantics by grouping routers into specific domains.

Several projects have aimed to extract semantic informa-
tion from real datasets. We have already mentioned [10][17]
who associate peering relationships with edges in the AS-
level topology, and the work in [10][17] who aim to char-
acterize hierarchy. Chang et al. describe a method for in-
ferring AS-level topology from router-level path traces [15].
Such a technique has the potential to allow one to bring se-
mantic information from the router-level data “up” to the
AS-level topology (e.g., estimates of the number of routers
in an AS), however the Chang work primarily focuses on
the important task of identifying border routers and not
on issues of semantics.

Also closely related to our work are attempts to under-
stand which evaluation metrics are most important in as-
sessing the quality of topologies. This is a difficult problem,
since the answer may be influenced by the particular use
of the synthetic topology. Perhaps the earliest work in this
area is the work by Zegura et al. to evaluate several topol-
ogy generators using a variety of measures including met-
rics related to multicast routing [40]. More recently, several
papers propose the use of “large-scale” or “overall” proper-
ties, based on the intuition that these properties are more
important than local properties. For example,metrics such
as expansion, resilience and distortion have been examined.
We agree with the intuition that large-scale properties are
important, particularly if they can reflect semantic struc-
ture in network topology (rather than more abstract no-
tions derived from basic graph theory).

We mention one other important area in topology mod-
eling. Significant progress has been made recently in map-
ping both the router-level topology of the Internet as well
as the AS-level topology. Improvements in understanding
of the real topology obviously lead to improved models.

VII. SUMMARY

We have provided evidence that clusters exist in the AS
topology and described a general method for finding them.
We have compared the clustering properties of Inet to the
ones found in the real data and concluded substantial dif-
ferences. So, extra work is needed to create topology gen-
erators that effectively capture both the degree-sequence
found in the real network and the existence of clusters.

As a side issue, we want to investigate the different types
of clusters that exist in real networks and try to incorporate
them in topology generators. In order to do so, more work
is needed in quantifying what is a good cluster, how to
measure it, and how to systematically extract clusters from
the eigenvectors.



In addition, we found that degree-sequence alone (even
for very skewed degree sequences like the ones of AS-level
Internet topologies) can result in a variety of topologies
with strikingly different characteristics. On the flip side,
such extreme cases can be used as stress test in simulation.

We have indicated foundations in graph theory that can
make future design of topology generators substantially
richer and more formal.
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